Artificial General Intelligence

Comments ยท 5 Views

Artificial basic intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or surpasses human cognitive abilities across a wide range of cognitive tasks.

Artificial general intelligence (AGI) is a type of synthetic intelligence (AI) that matches or surpasses human cognitive abilities across a wide range of cognitive tasks. This contrasts with narrow AI, which is restricted to particular tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that greatly goes beyond human cognitive capabilities. AGI is considered among the definitions of strong AI.


Creating AGI is a main goal of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research study and development jobs throughout 37 nations. [4]

The timeline for attaining AGI remains a subject of continuous argument among researchers and specialists. As of 2023, some argue that it might be possible in years or decades; others preserve it might take a century or longer; a minority believe it might never ever be achieved; and another minority claims that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has revealed issues about the fast development towards AGI, recommending it might be achieved quicker than many expect. [7]

There is argument on the specific definition of AGI and regarding whether modern big language models (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a typical subject in sci-fi and futures studies. [9] [10]

Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many experts on AI have stated that reducing the threat of human termination postured by AGI needs to be a global top priority. [14] [15] Others find the advancement of AGI to be too remote to provide such a risk. [16] [17]

Terminology


AGI is also referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or basic intelligent action. [21]

Some scholastic sources schedule the term "strong AI" for computer system programs that experience sentience or consciousness. [a] On the other hand, weak AI (or narrow AI) has the ability to solve one particular issue however lacks general cognitive abilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as humans. [a]

Related ideas include artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical kind of AGI that is much more generally intelligent than humans, [23] while the notion of transformative AI relates to AI having a large effect on society, for instance, comparable to the agricultural or commercial transformation. [24]

A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify 5 levels of AGI: emerging, proficient, specialist, virtuoso, and superhuman. For example, a proficient AGI is specified as an AI that outperforms 50% of knowledgeable grownups in a large range of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is similarly defined however with a limit of 100%. They consider big language models like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]

Characteristics


Various popular meanings of intelligence have actually been proposed. Among the leading proposals is the Turing test. However, there are other well-known meanings, and some scientists disagree with the more popular methods. [b]

Intelligence traits


Researchers typically hold that intelligence is required to do all of the following: [27]

factor, use method, solve puzzles, and make judgments under uncertainty
represent understanding, consisting of sound judgment knowledge
strategy
learn
- communicate in natural language
- if required, incorporate these abilities in conclusion of any given objective


Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and choice making) think about additional qualities such as creativity (the ability to form unique mental images and principles) [28] and autonomy. [29]

Computer-based systems that exhibit a number of these capabilities exist (e.g. see computational imagination, automated thinking, classifieds.ocala-news.com choice support system, robotic, evolutionary calculation, intelligent agent). There is argument about whether contemporary AI systems possess them to an appropriate degree.


Physical characteristics


Other capabilities are thought about desirable in intelligent systems, as they may impact intelligence or help in its expression. These include: [30]

- the capability to sense (e.g. see, hear, and so on), etymologiewebsite.nl and
- the capability to act (e.g. relocation and manipulate objects, modification place to check out, and so on).


This consists of the ability to spot and react to hazard. [31]

Although the capability to sense (e.g. see, hear, etc) and the capability to act (e.g. relocation and manipulate items, change location to check out, and so on) can be preferable for some intelligent systems, [30] these physical abilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that large language designs (LLMs) may currently be or end up being AGI. Even from a less positive viewpoint on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system suffices, provided it can process input (language) from the external world in place of human senses. This analysis lines up with the understanding that AGI has actually never been proscribed a particular physical personification and hence does not require a capacity for mobility or conventional "eyes and ears". [32]

Tests for human-level AGI


Several tests meant to verify human-level AGI have actually been thought about, including: [33] [34]

The concept of the test is that the device needs to attempt and pretend to be a male, by responding to concerns put to it, and it will only pass if the pretence is reasonably persuading. A substantial portion of a jury, who must not be professional about devices, must be taken in by the pretence. [37]

AI-complete problems


An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would require to execute AGI, since the option is beyond the capabilities of a purpose-specific algorithm. [47]

There are lots of problems that have been conjectured to require general intelligence to fix in addition to people. Examples consist of computer vision, natural language understanding, and dealing with unforeseen scenarios while resolving any real-world problem. [48] Even a specific task like translation needs a device to read and compose in both languages, follow the author's argument (reason), understand the context (understanding), and faithfully replicate the author's original intent (social intelligence). All of these issues need to be fixed simultaneously in order to reach human-level maker efficiency.


However, a lot of these jobs can now be carried out by modern-day large language models. According to Stanford University's 2024 AI index, AI has reached human-level performance on numerous benchmarks for reading understanding and visual reasoning. [49]

History


Classical AI


Modern AI research began in the mid-1950s. [50] The very first generation of AI researchers were encouraged that artificial general intelligence was possible which it would exist in just a couple of years. [51] AI pioneer Herbert A. Simon wrote in 1965: "makers will be capable, within twenty years, of doing any work a man can do." [52]

Their predictions were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they might develop by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the task of making HAL 9000 as sensible as possible according to the consensus forecasts of the time. He said in 1967, "Within a generation ... the problem of creating 'expert system' will significantly be fixed". [54]

Several classical AI projects, such as Doug Lenat's Cyc project (that started in 1984), and Allen Newell's Soar task, were directed at AGI.


However, in the early 1970s, it became apparent that scientists had actually grossly underestimated the trouble of the project. Funding companies became skeptical of AGI and put researchers under increasing pressure to produce beneficial "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a table talk". [58] In action to this and the success of professional systems, both industry and federal government pumped cash into the field. [56] [59] However, self-confidence in AI marvelously collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never fulfilled. [60] For the second time in twenty years, AI researchers who forecasted the imminent accomplishment of AGI had actually been misinterpreted. By the 1990s, AI scientists had a track record for making vain promises. They ended up being unwilling to make forecasts at all [d] and avoided mention of "human level" synthetic intelligence for fear of being labeled "wild-eyed dreamer [s]. [62]

Narrow AI research


In the 1990s and early 21st century, mainstream AI attained business success and scholastic respectability by concentrating on particular sub-problems where AI can produce proven results and industrial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the technology market, and research in this vein is greatly moneyed in both academic community and industry. As of 2018 [upgrade], development in this field was considered an emerging trend, and a fully grown stage was anticipated to be reached in more than 10 years. [64]

At the turn of the century, numerous traditional AI scientists [65] hoped that strong AI could be developed by combining programs that solve different sub-problems. Hans Moravec composed in 1988:


I am positive that this bottom-up path to expert system will one day satisfy the conventional top-down route more than half method, ready to provide the real-world competence and the commonsense understanding that has been so frustratingly evasive in thinking programs. Fully intelligent machines will result when the metaphorical golden spike is driven uniting the 2 efforts. [65]

However, even at the time, this was challenged. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:


The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow meet "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper are valid, then this expectation is hopelessly modular and there is really just one viable path from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we must even attempt to reach such a level, considering that it looks as if getting there would simply amount to uprooting our signs from their intrinsic meanings (consequently simply minimizing ourselves to the practical equivalent of a programmable computer). [66]

Modern artificial basic intelligence research


The term "artificial basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the capability to please goals in a broad range of environments". [68] This kind of AGI, identified by the capability to maximise a mathematical meaning of intelligence rather than display human-like behaviour, [69] was likewise called universal synthetic intelligence. [70]

The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and featuring a variety of visitor speakers.


Since 2023 [update], a little number of computer system scientists are active in AGI research study, and numerous contribute to a series of AGI conferences. However, increasingly more researchers are interested in open-ended learning, [76] [77] which is the concept of enabling AI to constantly learn and innovate like humans do.


Feasibility


Since 2023, the development and possible accomplishment of AGI stays a subject of intense dispute within the AI neighborhood. While standard agreement held that AGI was a remote goal, current advancements have actually led some researchers and market figures to declare that early forms of AGI might currently exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "machines will be capable, within twenty years, of doing any work a guy can do". This forecast failed to come true. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century because it would need "unforeseeable and fundamentally unpredictable developments" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern-day computing and human-level expert system is as broad as the gulf in between existing space flight and practical faster-than-light spaceflight. [80]

A further challenge is the absence of clarity in specifying what intelligence entails. Does it require awareness? Must it display the capability to set objectives as well as pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are centers such as preparation, thinking, and causal understanding needed? Does intelligence need clearly reproducing the brain and its specific faculties? Does it require feelings? [81]

Most AI researchers think strong AI can be achieved in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of achieving strong AI. [82] [83] John McCarthy is among those who think human-level AI will be accomplished, however that the present level of development is such that a date can not properly be predicted. [84] AI professionals' views on the feasibility of AGI wax and wane. Four surveys performed in 2012 and 2013 suggested that the average quote among specialists for when they would be 50% positive AGI would get here was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the specialists, 16.5% responded to with "never" when asked the same question however with a 90% self-confidence rather. [85] [86] Further present AGI progress factors to consider can be discovered above Tests for validating human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong bias towards forecasting the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They examined 95 predictions made between 1950 and 2012 on when human-level AI will happen. [87]

In 2023, Microsoft researchers released an in-depth assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we think that it could fairly be considered as an early (yet still insufficient) variation of a synthetic basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outshines 99% of people on the Torrance tests of creativity. [89] [90]

Blaise Agรผera y Arcas and Peter Norvig composed in 2023 that a substantial level of general intelligence has actually currently been achieved with frontier designs. They composed that reluctance to this view comes from four main factors: a "healthy suspicion about metrics for AGI", an "ideological commitment to alternative AI theories or strategies", a "dedication to human (or biological) exceptionalism", or a "issue about the financial implications of AGI". [91]

2023 likewise marked the emergence of big multimodal models (big language designs capable of processing or creating multiple methods such as text, audio, and images). [92]

In 2024, OpenAI launched o1-preview, the first of a series of models that "spend more time thinking before they respond". According to Mira Murati, this ability to think before reacting represents a new, additional paradigm. It improves design outputs by investing more computing power when generating the response, whereas the design scaling paradigm improves outputs by increasing the model size, training information and training calculate power. [93] [94]

An OpenAI staff member, Vahid Kazemi, declared in 2024 that the company had actually accomplished AGI, specifying, "In my viewpoint, we have already accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "better than a lot of human beings at most jobs." He also attended to criticisms that large language designs (LLMs) simply follow predefined patterns, comparing their knowing procedure to the scientific method of observing, assuming, and verifying. These statements have actually stimulated debate, as they rely on a broad and unconventional definition of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models demonstrate impressive versatility, they might not completely satisfy this standard. Notably, Kazemi's comments came shortly after OpenAI removed "AGI" from the regards to its collaboration with Microsoft, triggering speculation about the company's strategic intents. [95]

Timescales


Progress in expert system has actually traditionally gone through periods of rapid development separated by periods when development appeared to stop. [82] Ending each hiatus were essential advances in hardware, software application or both to produce space for more development. [82] [98] [99] For instance, the computer hardware readily available in the twentieth century was not enough to execute deep learning, which requires great deals of GPU-enabled CPUs. [100]

In the introduction to his 2006 book, [101] Goertzel states that quotes of the time needed before a genuinely flexible AGI is constructed differ from 10 years to over a century. As of 2007 [upgrade], the agreement in the AGI research neighborhood appeared to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI scientists have actually provided a large range of opinions on whether progress will be this quick. A 2012 meta-analysis of 95 such viewpoints discovered a predisposition towards anticipating that the beginning of AGI would occur within 16-26 years for modern and historic forecasts alike. That paper has actually been criticized for how it classified viewpoints as specialist or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, significantly much better than the second-best entry's rate of 26.3% (the conventional technique used a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was considered the preliminary ground-breaker of the existing deep knowing wave. [105]

In 2017, researchers Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on openly available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old kid in very first grade. A grownup pertains to about 100 typically. Similar tests were brought out in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]

In 2020, OpenAI developed GPT-3, a language model capable of performing numerous varied jobs without specific training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]

In the same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to comply with their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]

In 2022, DeepMind developed Gato, a "general-purpose" system efficient in performing more than 600 various jobs. [110]

In 2023, Microsoft Research released a study on an early version of OpenAI's GPT-4, competing that it exhibited more basic intelligence than previous AI designs and showed human-level efficiency in jobs spanning several domains, such as mathematics, coding, and law. This research study sparked a dispute on whether GPT-4 could be considered an early, incomplete version of artificial general intelligence, highlighting the need for additional expedition and evaluation of such systems. [111]

In 2023, the AI scientist Geoffrey Hinton specified that: [112]

The concept that this stuff could really get smarter than people - a couple of individuals believed that, [...] But the majority of people believed it was way off. And I thought it was way off. I believed it was 30 to 50 years and even longer away. Obviously, I no longer believe that.


In May 2023, Demis Hassabis likewise stated that "The development in the last couple of years has been quite amazing", which he sees no reason that it would slow down, anticipating AGI within a decade or perhaps a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within five years, AI would be capable of passing any test at least in addition to humans. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI worker, estimated AGI by 2027 to be "strikingly plausible". [115]

Whole brain emulation


While the advancement of transformer models like in ChatGPT is thought about the most appealing course to AGI, [116] [117] entire brain emulation can work as an alternative method. With entire brain simulation, a brain model is developed by scanning and mapping a biological brain in information, and then copying and imitating it on a computer system or another computational gadget. The simulation model should be adequately faithful to the original, so that it behaves in virtually the same way as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been discussed in synthetic intelligence research [103] as a method to strong AI. Neuroimaging innovations that might deliver the required detailed understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of adequate quality will appear on a comparable timescale to the computing power needed to emulate it.


Early estimates


For low-level brain simulation, a very effective cluster of computers or GPUs would be needed, offered the huge quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by the adult years. Estimates differ for an adult, ranging from 1014 to 5 ร— 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based on a basic switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil looked at different quotes for the hardware required to equal the human brain and adopted a figure of 1016 calculations per second (cps). [e] (For comparison, if a "computation" was equivalent to one "floating-point operation" - a procedure used to rate existing supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, attained in 2011, while 1018 was accomplished in 2022.) He utilized this figure to anticipate the required hardware would be offered sometime between 2015 and 2025, if the rapid development in computer power at the time of writing continued.


Current research study


The Human Brain Project, an EU-funded effort active from 2013 to 2023, has established an especially in-depth and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.


Criticisms of simulation-based techniques


The artificial neuron model assumed by Kurzweil and used in numerous current synthetic neural network executions is basic compared with biological nerve cells. A brain simulation would likely have to catch the comprehensive cellular behaviour of biological nerve cells, currently comprehended only in broad overview. The overhead introduced by full modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would require computational powers numerous orders of magnitude larger than Kurzweil's quote. In addition, the price quotes do not represent glial cells, which are understood to play a function in cognitive procedures. [125]

A basic criticism of the simulated brain approach derives from embodied cognition theory which asserts that human personification is an essential aspect of human intelligence and is necessary to ground significance. [126] [127] If this theory is correct, any fully practical brain model will require to include more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, but it is unidentified whether this would suffice.


Philosophical perspective


"Strong AI" as defined in approach


In 1980, thinker John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference in between 2 hypotheses about artificial intelligence: [f]

Strong AI hypothesis: A synthetic intelligence system can have "a mind" and "consciousness".
Weak AI hypothesis: An expert system system can (only) act like it thinks and has a mind and consciousness.


The first one he called "strong" since it makes a more powerful statement: it assumes something special has actually occurred to the machine that goes beyond those capabilities that we can evaluate. The behaviour of a "weak AI" device would be exactly similar to a "strong AI" machine, but the latter would also have subjective conscious experience. This use is also common in academic AI research and textbooks. [129]

In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to suggest "human level synthetic general intelligence". [102] This is not the very same as Searle's strong AI, unless it is assumed that consciousness is needed for human-level AGI. Academic thinkers such as Searle do not believe that holds true, and to most artificial intelligence scientists the concern is out-of-scope. [130]

Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to know if it in fact has mind - indeed, there would be no method to inform. For AI research, Searle's "weak AI hypothesis" is equivalent to the declaration "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are 2 various things.


Consciousness


Consciousness can have numerous significances, and some elements play substantial roles in science fiction and the principles of expert system:


Sentience (or "remarkable awareness"): The ability to "feel" perceptions or emotions subjectively, rather than the capability to reason about understandings. Some philosophers, such as David Chalmers, use the term "consciousness" to refer solely to incredible consciousness, which is roughly equivalent to life. [132] Determining why and how subjective experience emerges is called the hard problem of consciousness. [133] Thomas Nagel described in 1974 that it "feels like" something to be conscious. If we are not mindful, then it does not feel like anything. Nagel uses the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had actually accomplished life, though this claim was extensively contested by other experts. [135]

Self-awareness: To have conscious awareness of oneself as a separate individual, especially to be purposely knowledgeable about one's own thoughts. This is opposed to simply being the "subject of one's believed"-an os or debugger has the ability to be "mindful of itself" (that is, to represent itself in the same way it represents everything else)-however this is not what people normally mean when they utilize the term "self-awareness". [g]

These characteristics have an ethical dimension. AI sentience would offer increase to issues of well-being and legal defense, likewise to animals. [136] Other aspects of consciousness related to cognitive abilities are also pertinent to the concept of AI rights. [137] Figuring out how to integrate innovative AI with existing legal and social frameworks is an emerging problem. [138]

Benefits


AGI could have a wide range of applications. If oriented towards such objectives, AGI might assist alleviate various issues worldwide such as hunger, poverty and illness. [139]

AGI might improve performance and effectiveness in the majority of jobs. For instance, in public health, AGI might accelerate medical research study, significantly against cancer. [140] It could look after the elderly, [141] and democratize access to quick, premium medical diagnostics. It might use enjoyable, cheap and customized education. [141] The need to work to subsist could become obsolete if the wealth produced is appropriately redistributed. [141] [142] This also raises the concern of the place of humans in a radically automated society.


AGI could also help to make rational decisions, and to anticipate and prevent catastrophes. It might likewise assist to reap the advantages of possibly catastrophic innovations such as nanotechnology or climate engineering, while avoiding the associated dangers. [143] If an AGI's main goal is to prevent existential disasters such as human extinction (which could be challenging if the Vulnerable World Hypothesis turns out to be true), [144] it could take steps to considerably minimize the risks [143] while minimizing the impact of these measures on our quality of life.


Risks


Existential dangers


AGI may represent numerous types of existential danger, which are dangers that threaten "the premature termination of Earth-originating smart life or the irreversible and drastic destruction of its potential for desirable future advancement". [145] The danger of human extinction from AGI has actually been the topic of numerous disputes, however there is likewise the possibility that the development of AGI would cause a permanently problematic future. Notably, it could be used to spread and protect the set of values of whoever develops it. If humankind still has ethical blind areas similar to slavery in the past, AGI might irreversibly entrench it, preventing ethical progress. [146] Furthermore, AGI could facilitate mass security and brainwashing, which could be utilized to produce a stable repressive around the world totalitarian program. [147] [148] There is likewise a risk for the devices themselves. If makers that are sentient or otherwise worthwhile of moral consideration are mass developed in the future, taking part in a civilizational course that forever disregards their well-being and interests might be an existential catastrophe. [149] [150] Considering how much AGI could enhance humankind's future and help in reducing other existential threats, Toby Ord calls these existential risks "an argument for continuing with due caution", not for "deserting AI". [147]

Risk of loss of control and human termination


The thesis that AI positions an existential threat for human beings, which this danger requires more attention, is questionable however has actually been endorsed in 2023 by numerous public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking criticized extensive indifference:


So, dealing with possible futures of enormous benefits and risks, the professionals are definitely doing everything possible to make sure the best result, right? Wrong. If a remarkable alien civilisation sent us a message saying, 'We'll arrive in a few years,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is happening with AI. [153]

The possible fate of mankind has actually sometimes been compared to the fate of gorillas threatened by human activities. The comparison states that higher intelligence permitted mankind to dominate gorillas, which are now vulnerable in manner ins which they might not have expected. As a result, the gorilla has become a threatened types, not out of malice, however just as a civilian casualties from human activities. [154]

The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate humanity and that we need to beware not to anthropomorphize them and interpret their intents as we would for people. He stated that people won't be "wise adequate to design super-intelligent machines, yet extremely dumb to the point of offering it moronic objectives with no safeguards". [155] On the other side, the idea of important convergence suggests that nearly whatever their objectives, intelligent representatives will have reasons to attempt to make it through and acquire more power as intermediary actions to accomplishing these goals. And that this does not need having feelings. [156]

Many scholars who are worried about existential danger advocate for more research study into fixing the "control problem" to answer the concern: what types of safeguards, algorithms, or architectures can programmers carry out to increase the likelihood that their recursively-improving AI would continue to behave in a friendly, rather than devastating, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which might lead to a race to the bottom of security precautions in order to release products before competitors), [159] and the use of AI in weapon systems. [160]

The thesis that AI can pose existential danger likewise has critics. Skeptics typically state that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other problems connected to current AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for lots of individuals beyond the technology market, existing chatbots and LLMs are already perceived as though they were AGI, leading to additional misconception and fear. [162]

Skeptics often charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence changing an irrational belief in a supreme God. [163] Some researchers believe that the communication projects on AI existential risk by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulatory capture and to pump up interest in their items. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and researchers, provided a joint statement asserting that "Mitigating the risk of extinction from AI ought to be a worldwide concern alongside other societal-scale risks such as pandemics and nuclear war." [152]

Mass joblessness


Researchers from OpenAI approximated that "80% of the U.S. labor force could have at least 10% of their work jobs affected by the introduction of LLMs, while around 19% of employees may see a minimum of 50% of their jobs affected". [166] [167] They consider workplace employees to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI might have a much better autonomy, capability to make decisions, to interface with other computer system tools, however likewise to control robotized bodies.


According to Stephen Hawking, the result of automation on the quality of life will depend on how the wealth will be rearranged: [142]

Everyone can take pleasure in a life of luxurious leisure if the machine-produced wealth is shared, or many people can end up badly poor if the machine-owners successfully lobby versus wealth redistribution. So far, the trend appears to be toward the second choice, with technology driving ever-increasing inequality


Elon Musk considers that the automation of society will require governments to embrace a universal standard income. [168]

See likewise


Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain
AI effect
AI security - Research area on making AI safe and advantageous
AI alignment - AI conformance to the desired objective
A.I. Rising - 2018 movie directed by Lazar Bodroลพa
Expert system
Automated artificial intelligence - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research initiative announced by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General video game playing - Ability of expert system to play different video games
Generative synthetic intelligence - AI system capable of producing material in action to triggers
Human Brain Project - Scientific research job
Intelligence amplification - Use of infotech to augment human intelligence (IA).
Machine ethics - Moral behaviours of manufactured machines.
Moravec's paradox.
Multi-task learning - Solving several machine discovering jobs at the same time.
Neural scaling law - Statistical law in maker learning.
Outline of expert system - Overview of and topical guide to artificial intelligence.
Transhumanism - Philosophical movement.
Synthetic intelligence - Alternate term for or form of synthetic intelligence.
Transfer knowing - Machine learning technique.
Loebner Prize - Annual AI competition.
Hardware for expert system - Hardware specifically developed and optimized for expert system.
Weak artificial intelligence - Form of expert system.


Notes


^ a b See listed below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the article Chinese room.
^ AI founder John McCarthy composes: "we can not yet characterize in general what type of computational procedures we wish to call intelligent. " [26] (For a discussion of some meanings of intelligence used by expert system scientists, see viewpoint of expert system.).
^ The Lighthill report particularly criticized AI's "grand goals" and led the dismantling of AI research in England. [55] In the U.S., DARPA ended up being identified to fund only "mission-oriented direct research, rather than basic undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be a great relief to the rest of the workers in AI if the innovators of brand-new basic formalisms would express their hopes in a more secured kind than has sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As defined in a basic AI textbook: "The assertion that machines might potentially act wisely (or, perhaps better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that makers that do so are in fact believing (instead of replicating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to carry out a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that artificial general intelligence benefits all of mankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is developing artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were determined as being active in 2020.
^ a b c "AI timelines: What do experts in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton quits Google and warns of danger ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad actors from utilizing it for bad things.
^ Bubeck, Sรฉbastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The genuine danger is not AI itself however the method we release it.
^ "Impressed by synthetic intelligence? Experts state AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential risks to humanity.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last innovation that humankind needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of termination from AI need to be an international concern.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists caution of threat of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating makers that can outthink us in basic ways.
^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no factor to fear AI as an existential threat.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the full variety of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is transforming our world - it is on everyone to make sure that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of intelligent traits is based on the subjects covered by major AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reassessed: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reassessed: The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine young boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists challenge whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of difficult exams both AI variations have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended evaluating an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software application engineers prevented the term expert system for fear of being deemed wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "ะ˜ะทะฑะธั€ะฐะตะผะธ ะดะธัั†ะธะฟะปะธะฝะธ 2009/2010 - ะฟั€ะพะปะตั‚ะตะฝ ั‚ั€ะธะผะตัั‚ัŠั€" [Elective courses 2009/2010 - spring trimester] ะคะฐะบัƒะปั‚ะตั‚ ะฟะพ ะผะฐั‚ะตะผะฐั‚ะธะบะฐ ะธ ะธะฝั„ะพั€ะผะฐั‚ะธะบะฐ [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "ะ˜ะทะฑะธั€ะฐะตะผะธ ะดะธัั†ะธะฟะปะธะฝะธ 2010/2011 - ะทะธะผะตะฝ ั‚ั€ะธะผะตัั‚ัŠั€" [Elective courses 2010/2011 - winter season trimester] ะคะฐะบัƒะปั‚ะตั‚ ะฟะพ ะผะฐั‚ะตะผะฐั‚ะธะบะฐ ะธ ะธะฝั„ะพั€ะผะฐั‚ะธะบะฐ [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite development in machine intelligence, synthetic basic intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sรฉbastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us paradise or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Mรผller, V. C., & Bostrom, N. (2016 ). Future development in synthetic intelligence: A study of expert viewpoint. In Fundamental problems of artificial intelligence (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva ลฝรกฤkovรก, Michal Polรกk and Radek Schuster, 52-75. Plzeลˆ: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agรผera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a New

Comments