Artificial basic intelligence (AGI) is a type of synthetic intelligence (AI) that matches or goes beyond human cognitive capabilities throughout a wide variety of cognitive jobs. This contrasts with narrow AI, which is restricted to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that greatly surpasses human cognitive capabilities. AGI is thought about one of the definitions of strong AI.
Creating AGI is a main goal of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 survey determined 72 active AGI research study and development tasks across 37 countries. [4]
The timeline for users.atw.hu accomplishing AGI stays a topic of continuous argument amongst researchers and specialists. Since 2023, asteroidsathome.net some argue that it may be possible in years or decades; others maintain it may take a century or longer; a minority think it may never be accomplished; and another minority claims that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has actually revealed issues about the rapid progress towards AGI, suggesting it could be attained quicker than numerous anticipate. [7]
There is argument on the precise definition of AGI and concerning whether modern-day large language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical topic in science fiction and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many experts on AI have mentioned that reducing the danger of human termination presented by AGI needs to be a worldwide concern. [14] [15] Others find the advancement of AGI to be too remote to provide such a danger. [16] [17]
Terminology
AGI is likewise understood as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or basic smart action. [21]
Some academic sources reserve the term "strong AI" for computer system programs that experience life or awareness. [a] In contrast, weak AI (or narrow AI) is able to fix one particular problem but lacks basic cognitive abilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as humans. [a]
Related concepts include synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical kind of AGI that is much more generally intelligent than humans, [23] while the notion of transformative AI associates with AI having a big impact on society, for example, similar to the farming or commercial transformation. [24]
A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify 5 levels of AGI: emerging, skilled, specialist, virtuoso, and superhuman. For instance, a qualified AGI is defined as an AI that outshines 50% of competent grownups in a wide variety of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified however with a threshold of 100%. They think about big language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. Among the leading proposals is the Turing test. However, there are other popular meanings, and some researchers disagree with the more popular methods. [b]
Intelligence traits
Researchers normally hold that intelligence is required to do all of the following: [27]
factor, usage method, resolve puzzles, and make judgments under uncertainty
represent understanding, including common sense knowledge
strategy
learn
- communicate in natural language
- if essential, incorporate these abilities in conclusion of any given objective
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and choice making) think about additional traits such as imagination (the capability to form unique psychological images and principles) [28] and autonomy. [29]
Computer-based systems that display many of these capabilities exist (e.g. see computational imagination, automated reasoning, choice support group, robot, evolutionary computation, intelligent agent). There is debate about whether modern-day AI systems possess them to an appropriate degree.
Physical traits
Other capabilities are thought about preferable in intelligent systems, as they might affect intelligence or help in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, etc), and
- the ability to act (e.g. relocation and control objects, change area to explore, etc).
This includes the ability to spot and react to danger. [31]
Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and manipulate things, change place to check out, etc) can be desirable for some smart systems, [30] these physical abilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) may already be or become AGI. Even from a less optimistic viewpoint on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system suffices, supplied it can process input (language) from the external world in location of human senses. This analysis aligns with the understanding that AGI has actually never ever been proscribed a particular physical personification and therefore does not demand a capacity for mobility or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests implied to verify human-level AGI have been thought about, consisting of: [33] [34]
The idea of the test is that the machine has to attempt and demo.qkseo.in pretend to be a male, by answering concerns put to it, and it will just pass if the pretence is reasonably convincing. A significant part of a jury, who need to not be expert about makers, must be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would need to execute AGI, because the solution is beyond the abilities of a purpose-specific algorithm. [47]
There are many issues that have actually been conjectured to need basic intelligence to fix in addition to human beings. Examples consist of computer vision, natural language understanding, and handling unexpected scenarios while resolving any real-world problem. [48] Even a particular job like translation requires a machine to read and compose in both languages, follow the author's argument (factor), comprehend the context (knowledge), and consistently recreate the author's initial intent (social intelligence). All of these problems need to be fixed simultaneously in order to reach human-level machine efficiency.
However, numerous of these jobs can now be performed by contemporary large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on lots of criteria for checking out understanding and visual reasoning. [49]
History
Classical AI
Modern AI research study began in the mid-1950s. [50] The first generation of AI researchers were encouraged that artificial general intelligence was possible and that it would exist in just a couple of decades. [51] AI leader Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they could create by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the project of making HAL 9000 as sensible as possible according to the consensus predictions of the time. He said in 1967, "Within a generation ... the problem of creating 'expert system' will considerably be solved". [54]
Several classical AI jobs, such as Doug Lenat's Cyc job (that began in 1984), and Allen Newell's Soar job, were directed at AGI.
However, in the early 1970s, it became obvious that researchers had grossly ignored the problem of the job. Funding agencies ended up being doubtful of AGI and put researchers under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a casual discussion". [58] In action to this and the success of expert systems, both market and government pumped money into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the 2nd time in twenty years, AI scientists who forecasted the impending achievement of AGI had been mistaken. By the 1990s, AI researchers had a track record for making vain pledges. They ended up being hesitant to make predictions at all [d] and prevented reference of "human level" expert system for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI achieved commercial success and academic respectability by focusing on specific sub-problems where AI can produce proven results and commercial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the innovation market, and research study in this vein is greatly funded in both academia and industry. Since 2018 [update], advancement in this field was thought about an emerging pattern, and a fully grown stage was anticipated to be reached in more than ten years. [64]
At the millenium, lots of mainstream AI researchers [65] hoped that strong AI could be established by combining programs that resolve numerous sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up path to artificial intelligence will one day satisfy the standard top-down path majority method, all set to supply the real-world competence and the commonsense understanding that has been so frustratingly evasive in reasoning programs. Fully intelligent makers will result when the metaphorical golden spike is driven unifying the two efforts. [65]
However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by stating:
The expectation has actually often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is truly only one practical route from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we should even attempt to reach such a level, considering that it looks as if arriving would simply amount to uprooting our symbols from their intrinsic meanings (thus simply minimizing ourselves to the practical equivalent of a programmable computer system). [66]
Modern artificial basic intelligence research
The term "synthetic general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the implications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to please goals in a vast array of environments". [68] This kind of AGI, characterized by the capability to maximise a mathematical definition of intelligence rather than display human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The very first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was provided in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and featuring a variety of guest speakers.
Since 2023 [update], a little number of computer system researchers are active in AGI research study, and many add to a series of AGI conferences. However, increasingly more scientists have an interest in open-ended knowing, [76] [77] which is the idea of allowing AI to continually discover and innovate like people do.
Feasibility
Since 2023, the development and potential accomplishment of AGI remains a topic of intense argument within the AI neighborhood. While conventional consensus held that AGI was a remote objective, recent advancements have actually led some researchers and market figures to claim that early kinds of AGI may currently exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "machines will be capable, within twenty years, of doing any work a man can do". This prediction stopped working to come real. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century because it would need "unforeseeable and essentially unpredictable breakthroughs" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between modern computing and human-level artificial intelligence is as broad as the gulf in between existing space flight and useful faster-than-light spaceflight. [80]
An additional obstacle is the lack of clearness in defining what intelligence involves. Does it need awareness? Must it show the capability to set goals in addition to pursue them? Is it simply a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are centers such as preparation, thinking, and causal understanding required? Does intelligence need clearly replicating the brain and its particular faculties? Does it require feelings? [81]
Most AI scientists think strong AI can be achieved in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is among those who believe human-level AI will be achieved, but that the present level of progress is such that a date can not accurately be predicted. [84] AI specialists' views on the expediency of AGI wax and wane. Four polls carried out in 2012 and 2013 suggested that the typical estimate among experts for when they would be 50% confident AGI would get here was 2040 to 2050, depending on the survey, with the mean being 2081. Of the experts, 16.5% responded to with "never ever" when asked the same concern however with a 90% self-confidence rather. [85] [86] Further current AGI development factors to consider can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong predisposition towards anticipating the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They evaluated 95 predictions made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers published a detailed assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we think that it might fairly be considered as an early (yet still insufficient) version of an artificial general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outperforms 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agรผera y Arcas and Peter Norvig composed in 2023 that a considerable level of basic intelligence has already been achieved with frontier models. They composed that unwillingness to this view originates from 4 main factors: a "healthy skepticism about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "dedication to human (or biological) exceptionalism", or a "issue about the economic implications of AGI". [91]
2023 likewise marked the development of big multimodal designs (large language designs capable of processing or generating several modalities such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of designs that "spend more time believing before they react". According to Mira Murati, this capability to believe before responding represents a brand-new, extra paradigm. It improves model outputs by investing more computing power when generating the answer, whereas the design scaling paradigm improves outputs by increasing the model size, training information and training compute power. [93] [94]
An OpenAI worker, Vahid Kazemi, claimed in 2024 that the company had actually attained AGI, specifying, "In my viewpoint, we have actually currently achieved AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "better than a lot of people at most jobs." He likewise attended to criticisms that large language models (LLMs) simply follow predefined patterns, comparing their knowing procedure to the scientific technique of observing, hypothesizing, and verifying. These declarations have stimulated debate, as they count on a broad and non-traditional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models show impressive adaptability, they may not completely satisfy this requirement. Notably, Kazemi's remarks came shortly after OpenAI eliminated "AGI" from the regards to its collaboration with Microsoft, prompting speculation about the company's tactical intentions. [95]
Timescales
Progress in expert system has traditionally gone through periods of fast progress separated by periods when development appeared to stop. [82] Ending each hiatus were essential advances in hardware, software application or both to create space for more progress. [82] [98] [99] For example, the computer system hardware readily available in the twentieth century was not sufficient to implement deep knowing, which needs large numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that price quotes of the time required before a truly versatile AGI is developed differ from ten years to over a century. As of 2007 [upgrade], the agreement in the AGI research neighborhood seemed to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI researchers have actually given a broad range of opinions on whether progress will be this quick. A 2012 meta-analysis of 95 such viewpoints found a bias towards predicting that the beginning of AGI would occur within 16-26 years for contemporary and historical forecasts alike. That paper has actually been criticized for how it categorized viewpoints as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, significantly better than the second-best entry's rate of 26.3% (the traditional technique used a weighted amount of ratings from different pre-defined classifiers). [105] AlexNet was considered the initial ground-breaker of the present deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on openly readily available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old kid in first grade. An adult comes to about 100 usually. Similar tests were performed in 2014, with the IQ score reaching a maximum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language design capable of performing lots of varied tasks without particular training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]
In the exact same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested for changes to the chatbot to comply with their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 different jobs. [110]
In 2023, Microsoft Research released a research study on an early version of OpenAI's GPT-4, contending that it exhibited more general intelligence than previous AI models and showed human-level performance in tasks covering multiple domains, such as mathematics, coding, and law. This research study triggered a debate on whether GPT-4 could be thought about an early, insufficient version of artificial basic intelligence, emphasizing the requirement for more exploration and assessment of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]
The idea that this things could really get smarter than individuals - a few people thought that, [...] But most people believed it was way off. And I thought it was method off. I believed it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly said that "The development in the last few years has been quite unbelievable", and that he sees no reason that it would decrease, expecting AGI within a years or even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within five years, AI would be capable of passing any test a minimum of in addition to humans. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI staff member, approximated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation
While the advancement of transformer models like in ChatGPT is thought about the most appealing path to AGI, [116] [117] entire brain emulation can work as an alternative approach. With whole brain simulation, a brain model is developed by scanning and mapping a biological brain in information, and then copying and replicating it on a computer system or another computational device. The simulation design need to be adequately faithful to the initial, so that it acts in virtually the very same way as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study functions. It has actually been discussed in expert system research study [103] as a method to strong AI. Neuroimaging innovations that might deliver the essential comprehensive understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of adequate quality will appear on a comparable timescale to the computing power needed to emulate it.
Early approximates
For low-level brain simulation, a very powerful cluster of computer systems or GPUs would be needed, offered the massive amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by their adult years. Estimates vary for an adult, varying from 1014 to 5 ร 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based on a basic switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at numerous price quotes for the hardware needed to equate to the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a measure utilized to rate current supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was achieved in 2022.) He used this figure to predict the required hardware would be readily available at some point in between 2015 and 2025, if the rapid development in computer power at the time of composing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually developed an especially in-depth and openly available atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The artificial nerve cell model assumed by Kurzweil and used in many current artificial neural network executions is easy compared to biological nerve cells. A brain simulation would likely need to catch the comprehensive cellular behaviour of biological neurons, presently comprehended only in broad outline. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (particularly on a molecular scale) would require computational powers numerous orders of magnitude larger than Kurzweil's quote. In addition, the price quotes do not represent glial cells, which are known to contribute in cognitive procedures. [125]
A fundamental criticism of the simulated brain method originates from embodied cognition theory which asserts that human embodiment is an important element of human intelligence and is necessary to ground significance. [126] [127] If this theory is right, any totally functional brain design will require to incorporate more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, however it is unidentified whether this would suffice.
Philosophical viewpoint
"Strong AI" as specified in approach
In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference between 2 hypotheses about artificial intelligence: [f]
Strong AI hypothesis: A synthetic intelligence system can have "a mind" and "awareness".
Weak AI hypothesis: An expert system system can (just) act like it thinks and has a mind and consciousness.
The first one he called "strong" because it makes a stronger declaration: it presumes something special has actually occurred to the maker that goes beyond those capabilities that we can evaluate. The behaviour of a "weak AI" machine would be specifically identical to a "strong AI" device, but the latter would likewise have subjective conscious experience. This use is also common in academic AI research and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to imply "human level synthetic general intelligence". [102] This is not the exact same as Searle's strong AI, unless it is assumed that consciousness is needed for human-level AGI. Academic theorists such as Searle do not believe that is the case, and to most expert system researchers the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to understand if it really has mind - undoubtedly, there would be no other way to tell. For AI research, Searle's "weak AI hypothesis" is equivalent to the declaration "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have numerous significances, and some aspects play significant roles in sci-fi and the ethics of artificial intelligence:
Sentience (or "remarkable awareness"): The ability to "feel" perceptions or emotions subjectively, rather than the capability to factor about perceptions. Some philosophers, such as David Chalmers, utilize the term "awareness" to refer solely to extraordinary consciousness, which is roughly equivalent to life. [132] Determining why and how subjective experience arises is referred to as the hard issue of awareness. [133] Thomas Nagel explained in 1974 that it "seems like" something to be mindful. If we are not mindful, then it doesn't feel like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had attained sentience, though this claim was widely disputed by other experts. [135]
Self-awareness: To have conscious awareness of oneself as a different person, especially to be knowingly knowledgeable about one's own thoughts. This is opposed to just being the "subject of one's thought"-an operating system or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the same method it represents whatever else)-but this is not what individuals normally suggest when they use the term "self-awareness". [g]
These qualities have an ethical measurement. AI sentience would trigger issues of well-being and legal defense, similarly to animals. [136] Other aspects of consciousness associated to cognitive capabilities are likewise relevant to the principle of AI rights. [137] Finding out how to incorporate sophisticated AI with existing legal and social structures is an emergent concern. [138]
Benefits
AGI might have a broad range of applications. If oriented towards such goals, AGI might help mitigate different problems worldwide such as appetite, hardship and health issue. [139]
AGI could improve performance and effectiveness in most jobs. For instance, in public health, AGI could speed up medical research study, especially against cancer. [140] It could take care of the elderly, [141] and democratize access to rapid, premium medical diagnostics. It might offer fun, low-cost and tailored education. [141] The requirement to work to subsist could become outdated if the wealth produced is appropriately rearranged. [141] [142] This likewise raises the question of the place of humans in a significantly automated society.
AGI might likewise help to make reasonable choices, and to expect and prevent catastrophes. It might also assist to profit of potentially devastating innovations such as nanotechnology or climate engineering, while preventing the associated threats. [143] If an AGI's main goal is to prevent existential disasters such as human termination (which might be challenging if the Vulnerable World Hypothesis ends up being true), [144] it might take procedures to significantly decrease the threats [143] while reducing the impact of these procedures on our quality of life.
Risks
Existential dangers
AGI might represent numerous kinds of existential danger, which are threats that threaten "the early termination of Earth-originating intelligent life or the irreversible and drastic damage of its capacity for preferable future development". [145] The threat of human termination from AGI has been the topic of numerous debates, however there is also the possibility that the development of AGI would lead to a permanently problematic future. Notably, it might be used to spread out and maintain the set of worths of whoever develops it. If humanity still has moral blind areas similar to slavery in the past, AGI may irreversibly entrench it, preventing moral development. [146] Furthermore, AGI might assist in mass monitoring and indoctrination, which might be used to create a stable repressive worldwide totalitarian regime. [147] [148] There is also a risk for the devices themselves. If devices that are sentient or otherwise worthwhile of ethical consideration are mass produced in the future, taking part in a civilizational course that indefinitely ignores their well-being and interests might be an existential catastrophe. [149] [150] Considering just how much AGI might improve humankind's future and help in reducing other existential risks, Toby Ord calls these existential threats "an argument for continuing with due care", not for "abandoning AI". [147]
Risk of loss of control and human termination
The thesis that AI postures an existential risk for people, and that this risk requires more attention, is questionable but has been endorsed in 2023 by numerous public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:
So, dealing with possible futures of incalculable advantages and dangers, the experts are certainly doing whatever possible to make sure the very best result, right? Wrong. If a remarkable alien civilisation sent us a message stating, 'We'll show up in a couple of decades,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The possible fate of mankind has in some cases been compared to the fate of gorillas threatened by human activities. The contrast specifies that higher intelligence permitted humankind to dominate gorillas, which are now vulnerable in methods that they could not have actually expected. As an outcome, the gorilla has become a threatened species, not out of malice, but simply as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate humanity and that we ought to beware not to anthropomorphize them and interpret their intents as we would for people. He said that people won't be "wise sufficient to create super-intelligent makers, yet unbelievably dumb to the point of offering it moronic objectives without any safeguards". [155] On the other side, the idea of critical merging suggests that nearly whatever their objectives, smart representatives will have reasons to attempt to survive and get more power as intermediary actions to attaining these objectives. And that this does not require having feelings. [156]
Many scholars who are concerned about existential risk advocate for more research into fixing the "control problem" to respond to the concern: what types of safeguards, algorithms, or architectures can programmers carry out to increase the likelihood that their recursively-improving AI would continue to behave in a friendly, rather than destructive, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which might lead to a race to the bottom of security precautions in order to launch items before rivals), [159] and making use of AI in weapon systems. [160]
The thesis that AI can posture existential threat likewise has critics. Skeptics generally say that AGI is not likely in the short-term, or that concerns about AGI distract from other concerns related to current AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many individuals beyond the innovation industry, existing chatbots and LLMs are currently viewed as though they were AGI, causing additional misunderstanding and worry. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence replacing an illogical belief in a supreme God. [163] Some scientists believe that the interaction campaigns on AI existential danger by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulative capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other industry leaders and scientists, provided a joint statement asserting that "Mitigating the threat of extinction from AI must be a global top priority together with other societal-scale threats such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI approximated that "80% of the U.S. labor force could have at least 10% of their work jobs impacted by the intro of LLMs, while around 19% of workers may see at least 50% of their jobs impacted". [166] [167] They consider office workers to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, ability to make decisions, to interface with other computer tools, but likewise to control robotized bodies.
According to Stephen Hawking, the result of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of glamorous leisure if the machine-produced wealth is shared, or many people can end up miserably poor if the machine-owners successfully lobby against wealth redistribution. So far, the pattern seems to be toward the second choice, with technology driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need governments to embrace a universal basic earnings. [168]
See also
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain
AI impact
AI security - Research location on making AI safe and useful
AI positioning - AI conformance to the intended objective
A.I. Rising - 2018 movie directed by Lazar Bodroลพa
Artificial intelligence
Automated maker knowing - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research study initiative announced by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre
General video game playing - Ability of synthetic intelligence to play various games
Generative synthetic intelligence - AI system capable of creating content in response to prompts
Human Brain Project - Scientific research study job
Intelligence amplification - Use of details technology to enhance human intelligence (IA).
Machine ethics - Moral behaviours of manufactured machines.
Moravec's paradox.
Multi-task knowing - Solving multiple machine learning jobs at the exact same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of synthetic intelligence - Overview of and topical guide to expert system.
Transhumanism - Philosophical movement.
Synthetic intelligence - Alternate term for or kind of expert system.
Transfer learning - Machine knowing strategy.
Loebner Prize - Annual AI competitors.
Hardware for synthetic intelligence - Hardware specifically developed and enhanced for expert system.
Weak expert system - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the article Chinese room.
^ AI founder John McCarthy composes: "we can not yet identify in general what sort of computational procedures we wish to call smart. " [26] (For a discussion of some definitions of intelligence utilized by artificial intelligence scientists, see philosophy of expert system.).
^ The Lighthill report particularly slammed AI's "grand goals" and led the taking apart of AI research study in England. [55] In the U.S., DARPA ended up being determined to fund only "mission-oriented direct research, instead of standard undirected research". [56] [57] ^ As AI founder John McCarthy writes "it would be a great relief to the remainder of the workers in AI if the innovators of new general formalisms would reveal their hopes in a more guarded kind than has often been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As defined in a standard AI textbook: "The assertion that makers might potentially act intelligently (or, perhaps much better, act as if they were intelligent) is called the 'weak AI' hypothesis by theorists, and the assertion that devices that do so are in fact thinking (as opposed to simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to carry out a single task.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that synthetic basic intelligence advantages all of humankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is creating synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were recognized as being active in 2020.
^ a b c "AI timelines: What do experts in synthetic intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton stops Google and cautions of threat ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can prevent the bad actors from using it for bad things.
^ Bubeck, Sรฉbastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The genuine risk is not AI itself but the way we deploy it.
^ "Impressed by expert system? Experts say AGI is coming next, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could position existential risks to mankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last innovation that humanity needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of termination from AI ought to be a worldwide top priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts warn of threat of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from creating makers that can outthink us in basic ways.
^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no factor to fear AI as an existential risk.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "maker intelligence with the full series of human intelligence.".
^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is changing our world - it is on everybody to make sure that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart traits is based on the topics covered by significant AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reconsidered: The concept of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reconsidered: archmageriseswiki.com The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists dispute whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of difficult tests both AI versions have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software engineers prevented the term expert system for fear of being viewed as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020.
^ "ะะทะฑะธัะฐะตะผะธ ะดะธััะธะฟะปะธะฝะธ 2009/2010 - ะฟัะพะปะตัะตะฝ ััะธะผะตัััั" [Elective courses 2009/2010 - spring trimester] ะคะฐะบัะปัะตั ะฟะพ ะผะฐัะตะผะฐัะธะบะฐ ะธ ะธะฝัะพัะผะฐัะธะบะฐ [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "ะะทะฑะธัะฐะตะผะธ ะดะธััะธะฟะปะธะฝะธ 2010/2011 - ะทะธะผะตะฝ ััะธะผะตัััั" [Elective courses 2010/2011 - winter season trimester] ะคะฐะบัะปัะตั ะฟะพ ะผะฐัะตะผะฐัะธะบะฐ ะธ ะธะฝัะพัะผะฐัะธะบะฐ [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of maker intelligence: Despite progress in machine intelligence, synthetic general intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sรฉbastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not become a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general synthetic intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Mรผller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A study of skilled viewpoint. In Fundamental issues of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva ลฝรกฤkovรก, Michal Polรกk and Radek Schuster, 52-75. Plzeล: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agรผera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and D